Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Travel Med ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591115

ABSTRACT

Overall effectiveness of infection in preventing reinfection with SARS-CoV-2 JN.1 variant was estimated at 1.8% (95% CI: -9.3-12.6%), and demonstrated rapid decline over time since the previous infection, decreasing from 82.4% (95% CI: 40.9 to 94.7%) within 3 to less than 6 months, to a negligible level after one year.

2.
Vaccine ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38616439

ABSTRACT

BACKGROUND: Vaccines were developed and deployed to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to characterize patterns in the protection provided by the BNT162b2 and mRNA-1273 mRNA vaccines against a spectrum of SARS-CoV-2 infection symptoms and severities. METHODS: A national, matched, test-negative, case-control study was conducted in Qatar between January 1 and December 18, 2021, utilizing a sample of 238,896 PCR-positive tests and 6,533,739 PCR-negative tests. Vaccine effectiveness was estimated against asymptomatic, symptomatic, severe coronavirus disease 2019 (COVID-19), critical COVID-19, and fatal COVID-19 infections. Data sources included Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalization, and death. RESULTS: Effectiveness of two-dose BNT162b2 vaccination was 75.6% (95% CI: 73.6-77.5) against asymptomatic infection and 76.5% (95% CI: 75.1-77.9) against symptomatic infection. Effectiveness against each of severe, critical, and fatal COVID-19 infections surpassed 90%. Immediately after the second dose, all categories-namely, asymptomatic, symptomatic, severe, critical, and fatal COVID-19-exhibited similarly high effectiveness. However, from 181 to 270 days post-second dose, effectiveness against asymptomatic and symptomatic infections declined to below 40%, while effectiveness against each of severe, critical, and fatal COVID-19 infections remained consistently high. However, estimates against fatal COVID-19 often had wide 95% confidence intervals. Analogous patterns were observed in three-dose BNT162b2 vaccination and two- and three-dose mRNA-1273 vaccination. Sensitivity analyses confirmed the results. CONCLUSION: A gradient in vaccine effectiveness exists and is linked to the symptoms and severity of infection, providing higher protection against more symptomatic and severe cases. This gradient intensifies over time as vaccine immunity wanes after the last vaccine dose. These patterns appear consistent irrespective of the vaccine type or whether the vaccination involves the primary series or a booster.

3.
Front Med (Lausanne) ; 11: 1363045, 2024.
Article in English | MEDLINE | ID: mdl-38529118

ABSTRACT

Introduction: Reinfections are increasingly becoming a feature in the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, accurately defining reinfection poses methodological challenges. Conventionally, reinfection is defined as a positive test occurring at least 90 days after a previous infection diagnosis. Yet, this extended time window may lead to an underestimation of reinfection occurrences. This study investigated the prospect of adopting an alternative, shorter time window for defining reinfection. Methods: A longitudinal study was conducted to assess the incidence of reinfections in the total population of Qatar, from February 28, 2020 to November 20, 2023. The assessment considered a range of time windows for defining reinfection, spanning from 1 day to 180 days. Subgroup analyses comparing first versus repeat reinfections and a sensitivity analysis, focusing exclusively on individuals who underwent frequent testing, were performed. Results: The relationship between the number of reinfections in the population and the duration of the time window used to define reinfection revealed two distinct dynamical domains. Within the initial 15 days post-infection diagnosis, almost all positive tests for SARS-CoV-2 were attributed to the original infection. However, surpassing the 30-day post-infection threshold, nearly all positive tests were attributed to reinfections. A 40-day time window emerged as a sufficiently conservative definition for reinfection. By setting the time window at 40 days, the estimated number of reinfections in the population increased from 84,565 to 88,384, compared to the 90-day time window. The maximum observed reinfections were 6 and 4 for the 40-day and 90-day time windows, respectively. The 40-day time window was appropriate for defining reinfection, irrespective of whether it was the first, second, third, or fourth occurrence. The sensitivity analysis, confined to high testers exclusively, replicated similar patterns and results. Discussion: A 40-day time window is optimal for defining reinfection, providing an informed alternative to the conventional 90-day time window. Reinfections are prevalent, with some individuals experiencing multiple instances since the onset of the pandemic.

4.
Am J Epidemiol ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38061757

ABSTRACT

The COVID-19 pandemic has highlighted the need to use infection testing databases to rapidly estimate effectiveness of prior infection in preventing reinfection ($P{E}_S$) by novel SARS-CoV-2 variants. Mathematical modeling was used to demonstrate a theoretical foundation for applicability of the test-negative, case-control study design to derive $P{E}_S$. Apart from the very early phase of an epidemic, the difference between the test-negative estimate for $P{E}_S$ and true value of $P{E}_S$ was minimal and became negligible as the epidemic progressed. The test-negative design provided robust estimation of $P{E}_S$ and its waning. Assuming that only 25% of prior infections are documented, misclassification of prior infection status underestimated $P{E}_S$, but the underestimate was considerable only when >50% of the population was ever infected. Misclassification of latent infection, misclassification of current active infection, and scale-up of vaccination all resulted in negligible bias in estimated $P{E}_S$. The test-negative design was applied to national-level testing data in Qatar to estimate $P{E}_S$ for SARS-CoV-2. $P{E}_S$ against SARS-CoV-2 Alpha and Beta variants was estimated at 97.0% (95% CI: 93.6-98.6) and 85.5% (95% CI: 82.4-88.1), respectively. These estimates were validated using a cohort study design. The test-negative design offers a feasible, robust method to estimate protection from prior infection in preventing reinfection.

5.
Heliyon ; 9(11): e21404, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027884

ABSTRACT

Background: The rapid growth of Qatar in the last two decades has attracted a large influx of immigrant craft and manual workers (CMWs) seeking employment in jobs associated with food handling, domestic service, and construction. Nearly 60 % of Qatar's population are expatriates CMWs, including many from hyperendemic countries for HEV. Thus, estimating the seroprevalence of HEV in Qatar and understanding its epidemiology is essential for public health efforts to control HEV transmission in Qatar. Methods: Blood samples from 2670 CMWs were collected between 2020 and 2021. All samples were tested for HEV-IgG antibodies. Positive HEV-IgG samples were tested for HEV-IgM antibodies, and those positives were also tested for viral antigens using an HEV-Ag ELISA kit and HEV-RNA by RT-PCR to confirm current HEV infections. Results: The seroprevalence of HEV-IgG was 27.3 % (729/2670; 95 % CI: 25.6-29.0). Of those HEV-IgG positive, 8.23 % (60/729; 95 % CI: 6.30-10.5) were HEV-IgM positive. Of the IgM-positive samples, 2 were HEV-RNA positive (3.39 %; 95 % CI: 0.40-11.7), and 1 was HEV-Ag positive (1.69 %; 95 % CI: 0.04-9.09). In addition, HEV-IgG seroprevalence was associated with age and nationality, with the highest seroprevalence in participants from Egypt (IgG 60.0 %; IgM 5.56 %), Pakistan (IgG 59.0 %; IgM 2.24 %), Nepal (IgG 29.3 %; IgM 2.70 %), Bangladesh (IgG 27.8 %; IgM 2.45 %), and India (IgG 23.9 %; IgM 2.43 %). Conclusion: In this study, we showed that the seroprevalence of HEV among CMWs was slightly higher than what was previously reported among the urban population in Qatar (2013-2016).

6.
Influenza Other Respir Viruses ; 17(11): e13224, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38019700

ABSTRACT

BACKGROUND: We investigated the contribution of age, coexisting medical conditions, sex, and vaccination to incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and of severe, critical, or fatal COVID-19 in older adults since pandemic onset. METHODS: A national retrospective cohort study was conducted in the population of Qatar aged ≥50 years between February 5, 2020 and June 15, 2023. Adjusted hazard ratios (AHRs) for infection and for severe coronavirus disease 2019 (COVID-19) outcomes were estimated through Cox regression models. RESULTS: Cumulative incidence was 25.01% (95% confidence interval [CI]: 24.86-25.15%) for infection and 1.59% (95% CI: 1.55-1.64%) for severe, critical, or fatal COVID-19 after a follow-up duration of 40.9 months. Risk of infection varied minimally by age and sex but increased significantly with coexisting conditions. Risk of infection was reduced with primary-series vaccination (AHR: 0.91, 95% CI: 0.90-0.93) and further with first booster vaccination (AHR: 0.75, 95% CI: 0.74-0.77). Risk of severe, critical, or fatal COVID-19 increased exponentially with age and linearly with coexisting conditions. AHRs for severe, critical, or fatal COVID-19 were 0.86 (95% CI: 0.7-0.97) for one dose, 0.15 (95% CI: 0.13-0.17) for primary-series vaccination, and 0.11 (95% CI: 0.08-0.14) for first booster vaccination. Sensitivity analysis restricted to only Qataris yielded similar results. CONCLUSION: Incidence of severe COVID-19 in older adults followed a dynamic pattern shaped by infection incidence, variant severity, and population immunity. Age, sex, and coexisting conditions were strong determinants of infection severity. Vaccine protection against severe outcomes showed a dose-response relationship, highlighting the importance of booster vaccination for older adults.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Cohort Studies , Retrospective Studies , Vaccination , Comorbidity
7.
Sci Adv ; 9(40): eadh0761, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37792951

ABSTRACT

Laboratory evidence suggests a possibility of immune imprinting for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We investigated the differences in the incidence of SARS-CoV-2 reinfection in a cohort of persons who had a primary Omicron infection, but different vaccination histories using matched, national, retrospective, cohort studies. Adjusted hazard ratio for reinfection incidence, factoring adjustment for differences in testing rate, was 0.43 [95% confidence interval (CI): 0.39 to 0.49] comparing history of two-dose vaccination to no vaccination, 1.47 (95% CI: 1.23 to 1.76) comparing history of three-dose vaccination to two-dose vaccination, and 0.57 (95% CI: 0.48 to 0.68) comparing history of three-dose vaccination to no vaccination. Divergence in cumulative incidence curves increased markedly when the incidence was dominated by BA.4/BA.5 and BA.2.75* Omicron subvariants. The history of primary-series vaccination enhanced immune protection against Omicron reinfection, but history of booster vaccination compromised protection against Omicron reinfection. These findings do not undermine the public health utility of booster vaccination.


Subject(s)
COVID-19 , Reinfection , Humans , Reinfection/prevention & control , Retrospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
9.
Int J Infect Dis ; 136: 81-90, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717648

ABSTRACT

OBJECTIVES: We assessed short-, medium-, and long-term all-cause mortality risks after a primary SARS-CoV-2 infection. METHODS: A national, matched, retrospective cohort study was conducted in Qatar to assess risk of all-cause mortality in the national SARS-CoV-2 primary infection cohort compared with the national infection-naïve cohort. Associations were estimated using Cox proportional-hazards regression models. Analyses were stratified by vaccination status and clinical vulnerability status. RESULTS: Among unvaccinated persons, within 90 days after primary infection, the adjusted hazard ratio (aHR) comparing mortality incidence in the primary-infection cohort with the infection-naïve cohort was 1.19 (95% confidence interval 1.02-1.39). aHR was 1.34 (1.11-1.63) in persons more clinically vulnerable to severe COVID-19 and 0.94 (0.72-1.24) in those less clinically vulnerable. Beyond 90 days after primary infection, aHR was 0.50 (0.37-0.68); aHR was 0.41 (0.28-0.58) at 3-7 months and 0.76 (0.46-1.26) at ≥8 months. The aHR was 0.37 (0.25-0.54) in more clinically vulnerable persons and 0.77 (0.48-1.24) in less clinically vulnerable persons. Among vaccinated persons, mortality incidence was comparable in the primary-infection versus infection-naïve cohorts, regardless of clinical vulnerability status. CONCLUSIONS: COVID-19 mortality was primarily driven by an accelerated onset of death among individuals who were already vulnerable to all-cause mortality, but vaccination prevented these accelerated deaths.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Qatar/epidemiology , Cohort Studies , Retrospective Studies
10.
Virol J ; 20(1): 188, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608372

ABSTRACT

BACKGROUND: Limited data exists on herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections in migrant populations. This study investigated HSV-1 and HSV-2 seroprevalences and associations among craft and manual workers (CMWs) in Qatar who constitute 60% of Qatar's population. METHODS: A national population-based cross-sectional seroprevalence survey was conducted on the CMW population, all men, between July 26 and September 9, 2020. 2,612 sera were tested for anti-HSV-1 IgG antibodies using HerpeSelect 1 ELISA IgG kits and for anti-HSV-2 IgG antibodies using HerpeSelect 2 ELISA IgG kits (Focus Diagnostics, USA). Univariable and multivariable logistic regression analyses were conducted to identify associations with HSV-1 and HSV-2 infections. RESULTS: Serological testing identified 2,171 sera as positive, 403 as negative, and 38 as equivocal for HSV-1 antibodies, and 300 sera as positive, 2,250 as negative, and 62 as equivocal for HSV-2 antibodies. HSV-1 and HSV-2 seroprevalences among CMWs were estimated at 84.2% (95% CI 82.8-85.6%) and 11.4% (95% CI 10.1-12.6%), respectively. HSV-1 infection was associated with nationality, educational attainment, and occupation. HSV-2 infection was associated with age, nationality, and educational attainment. CONCLUSIONS: Over 80% of CMWs are infected with HSV-1 and over 10% are infected with HSV-2. The findings highlight the need for sexual health programs to tackle sexually transmitted infections among the CMW population.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Transients and Migrants , Male , Humans , Qatar/epidemiology , Cross-Sectional Studies , Seroepidemiologic Studies , Herpes Simplex/epidemiology , Herpesvirus 2, Human , Antibodies, Viral , Immunoglobulin G
11.
EClinicalMedicine ; 62: 102102, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37533414

ABSTRACT

Background: Waning of natural infection protection and vaccine protection highlight the need to evaluate changes in population immunity over time. Population immunity of previous SARS-CoV-2 infection or of COVID-19 vaccination are defined, respectively, as the overall protection against reinfection or against breakthrough infection at a given point in time in a given population. Methods: We estimated these population immunities in Qatar's population between July 1, 2020 and November 30, 2022, to discern generic features of the epidemiology of SARS-CoV-2. Effectiveness of previous infection, mRNA primary-series vaccination, and mRNA booster (third-dose) vaccination in preventing infection were estimated, month by month, using matched, test-negative, case-control studies. Findings: Previous-infection effectiveness against reinfection was strong before emergence of Omicron, but declined with time after a wave and rebounded after a new wave. Effectiveness dropped after Omicron emergence from 88.3% (95% CI: 84.8-91.0%) in November 2021 to 51.0% (95% CI: 48.3-53.6%) in December 2021. Primary-series effectiveness against infection was 84.0% (95% CI: 83.0-85.0%) in April 2021, soon after introduction of vaccination, before waning gradually to 52.7% (95% CI: 46.5-58.2%) by November 2021. Effectiveness declined linearly by ∼1 percentage point every 5 days. After Omicron emergence, effectiveness dropped from 52.7% (95% CI: 46.5-58.2%) in November 2021 to negligible levels in December 2021. Booster effectiveness dropped after Omicron emergence from 83.0% (95% CI: 65.6-91.6%) in November 2021 to 32.9% (95% CI: 26.7-38.5%) in December 2021, and continued to decline thereafter. Effectiveness of previous infection and vaccination against severe, critical, or fatal COVID-19 were generally >80% throughout the study duration. Interpretation: High population immunity against infection may not be sustained beyond a year, but population immunity against severe COVID-19 is durable with slow waning even after Omicron emergence. Funding: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.

13.
EBioMedicine ; 95: 104734, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37515986

ABSTRACT

BACKGROUND: Protection against SARS-CoV-2 symptomatic infection and severe COVID-19 of previous infection, mRNA two-dose vaccination, mRNA three-dose vaccination, and hybrid immunity of previous infection and vaccination were investigated in Qatar for the Alpha, Beta, and Delta variants. METHODS: Six national, matched, test-negative, case-control studies were conducted between January 18 and December 18, 2021 on a sample of 239,120 PCR-positive tests and 6,103,365 PCR-negative tests. FINDINGS: Effectiveness of previous infection against Alpha, Beta, and Delta reinfection was 89.5% (95% CI: 85.5-92.3%), 87.9% (95% CI: 85.4-89.9%), and 90.0% (95% CI: 86.7-92.5%), respectively. Effectiveness of two-dose BNT162b2 vaccination against Alpha, Beta, and Delta infection was 90.5% (95% CI, 83.9-94.4%), 80.5% (95% CI: 79.0-82.0%), and 58.1% (95% CI: 54.6-61.3%), respectively. Effectiveness of three-dose BNT162b2 vaccination against Delta infection was 91.7% (95% CI: 87.1-94.7%). Effectiveness of hybrid immunity of previous infection and two-dose BNT162b2 vaccination was 97.4% (95% CI: 95.4-98.5%) against Beta infection and 94.5% (95% CI: 92.8-95.8%) against Delta infection. Effectiveness of previous infection and three-dose BNT162b2 vaccination was 98.1% (95% CI: 85.7-99.7%) against Delta infection. All five forms of immunity had >90% protection against severe, critical, or fatal COVID-19 regardless of variant. Similar effectiveness estimates were observed for mRNA-1273. A mathematical model accurately predicted hybrid immunity protection by assuming that the individual effects of previous infection and vaccination acted independently. INTERPRETATION: Hybrid immunity, offering the strongest protection, was mathematically predicted by assuming that the immunities obtained from previous infection and vaccination act independently, without synergy or redundancy. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.


Subject(s)
COVID-19 , Hepatitis D , Humans , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , RNA, Messenger , Vaccination , Adaptive Immunity
14.
Front Public Health ; 11: 1187786, 2023.
Article in English | MEDLINE | ID: mdl-37521971

ABSTRACT

Background: Direct-acting antivirals opened an opportunity for eliminating hepatitis C virus (HCV) infection in the Middle East and North Africa (MENA), the region most affected by HCV infection. Impact of HCV treatment as prevention (HCV-TasP) was investigated in 19 MENA countries. Methods: An age-structured mathematical model was used to assess program impact using epidemiologic and programming measures. The model was fitted to a database of systematically gathered HCV antibody prevalence data. Two main scenarios were investigated for the treatment roll-out to achieve (i) 80% reduction in HCV incidence by 2030, and (ii) incidence rate < 1 per 100,000 person-years by 2030. Results: In the target-80%-incidence-reduction scenario, number of treatments administrated by 2030 ranged from 2,610 in Lebanon to 180,416 in Sudan with a median of 53,079, and treatment coverage ranged between 40.2 and 78.4% with a median of 60.4%. By 2030, prevalence of chronic infection ranged between 0.0 and 0.3% with a median of 0.1%, and incidence rate, per 100,000 person-years, ranged between 0.9 and 16.3 with a median of 3.2. Program-attributed reduction in incidence rate ranged between 47.8 and 81.9% with a median of 68.5%, and number of averted infections ranged between 401 and 68,499 with a median of 8,703. Number of treatments needed to prevent one new infection ranged from 1.7 in Oman to 25.9 in Tunisia with a median of 6.5. In the target incidence rate < 1 per 100,000 person-years scenario, number of treatments administrated by 2030 ranged from 3,470 in Lebanon to 211,912 in Sudan with a median of 54,479, and treatment coverage ranged between 55.5 and 95.9% with a median of 87.5%. By 2030, prevalence of chronic infection was less than 0.1%, and incidence rate, per 100,000 person-years, reached less than 1. Program-attributed reduction in incidence rate ranged between 61.0 and 97.5% with a median of 90.7%, and number of averted infections ranged between 559 and 104,315 with a median of 12,158. Number of treatments needed to prevent one new infection ranged from 1.3 in Oman to 25.9 in Tunisia with a median of 5.5. Conclusion: HCV-TasP is an effective and indispensable prevention intervention to control MENA's HCV epidemic and to achieve elimination by 2030.

15.
Lancet Infect Dis ; 23(7): 816-827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36913963

ABSTRACT

BACKGROUND: Long-term effectiveness of COVID-19 mRNA boosters in populations with different previous infection histories and clinical vulnerability profiles is inadequately understood. We aimed to investigate the effectiveness of a booster (third dose) vaccination against SARS-CoV-2 infection and against severe, critical, or fatal COVID-19, relative to that of primary-series (two-dose) vaccination over a follow-up duration of 1 year. METHODS: This observational, matched, retrospective, cohort study was done on the population of Qatar in people with different immune histories and different clinical vulnerability to infection. The source of data are Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalisation, and death. Associations were estimated using inverse-probability-weighted Cox proportional-hazards regression models. The primary outcome of the study is the effectiveness of COVID-19 mRNA boosters against infection and against severe COVID-19. FINDINGS: Data were obtained for 2 228 686 people who had received at least two vaccine doses starting from Jan 5, 2021, of whom 658 947 (29·6%) went on to receive a third dose before data cutoff on Oct 12, 2022. There were 20 528 incident infections in the three-dose cohort and 30 771 infections in the two-dose cohort. Booster effectiveness relative to primary series was 26·2% (95% CI 23·6-28·6) against infection and 75·1% (40·2-89·6) against severe, critical, or fatal COVID-19, during 1-year follow-up after the booster. Among people clinically vulnerable to severe COVID-19, effectiveness was 34·2% (27·0-40·6) against infection and 76·6% (34·5-91·7) against severe, critical, or fatal COVID-19. Effectiveness against infection was highest at 61·4% (60·2-62·6) in the first month after the booster but waned thereafter and was modest at only 15·5% (8·3-22·2) by the sixth month. In the seventh month and thereafter, coincident with BA.4/BA.5 and BA.2·75* subvariant incidence, effectiveness was progressively negative albeit with wide CIs. Similar patterns of protection were observed irrespective of previous infection status, clinical vulnerability, or type of vaccine (BNT162b2 vs mRNA-1273). INTERPRETATION: Protection against omicron infection waned after the booster, and eventually suggested a possibility for negative immune imprinting. However, boosters substantially reduced infection and severe COVID-19, particularly among individuals who were clinically vulnerable, affirming the public health value of booster vaccination. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core (both at Weill Cornell Medicine-Qatar), Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, and Qatar University Biomedical Research Center.


Subject(s)
Biomedical Research , COVID-19 , Humans , Retrospective Studies , Cohort Studies , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics
17.
J Infect Public Health ; 16(2): 250-256, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603377

ABSTRACT

BACKGROUND: Some studies have reported that influenza vaccination is associated with lower risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and/or coronavirus disease 2019 (COVID-19) morbidity and mortality. This study aims to estimate effectiveness of influenza vaccination, using Abbott's quadrivalent Influvac Tetra vaccine, against SARS-CoV-2 infection and against severe COVID-19. METHODS: This matched, test-negative, case-control study was implemented on a population of 30,774 healthcare workers (HCWs) in Qatar during the 2020 annual influenza vaccination campaign, September 17, 2020-December 31, 2020, before introduction of COVID-19 vaccination. RESULTS: Of 30,774 HCWs, 576 with PCR-positive tests and 10,033 with exclusively PCR-negative tests were eligible for inclusion in the study. Matching by sex, age, nationality, reason for PCR testing, and PCR test date yielded 518 cases matched to 2058 controls. Median duration between influenza vaccination and the PCR test was 43 days (IQR, 29-62). Estimated effectiveness of influenza vaccination against SARS-CoV-2 infection> 14 days after receiving the vaccine was 29.7% (95% CI: 5.5-47.7%). Estimated effectiveness of influenza vaccination against severe, critical, or fatal COVID-19 was 88.9% (95% CI: 4.1-98.7%). Sensitivity analyses confirmed the main analysis results. CONCLUSIONS: Recent influenza vaccination is associated with a significant reduction in the risk of SARS-CoV-2 infection and COVID-19 severity.


Subject(s)
COVID-19 , Influenza, Human , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Qatar/epidemiology , COVID-19 Vaccines , Case-Control Studies , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccination , Health Personnel
19.
PLoS Med ; 19(12): e1003938, 2022 12.
Article in English | MEDLINE | ID: mdl-36520853

ABSTRACT

BACKGROUND: Economic losses due to herpes simplex infections in low- and middle-income countries (LMICs) are unknown. We estimated economic and quality-of-life losses due to genital herpes in 2019, in 90 LMICs, and from 2020 to 2030 in 45 countries in the World Health Organization (WHO) Africa. We additionally estimated economic losses due to human immunodeficiency virus (HIV) attributable to herpes simplex virus type 2 (HSV-2) infections. METHODS AND FINDINGS: We estimated genital herpes-related spending on treatment, wage losses due to absenteeism, and reductions in quality of life, for individuals aged 15 to 49 years, living with genital herpes. Had HSV-2 had contributed to the transmission of HIV, we estimated the share of antiretroviral treatment costs and HIV-related wage losses in 2019 that can be attributed to incident and prevalent HSV-2 infections in 2018. For the former, we used estimates of HSV-2 incidence and prevalence from the global burden of disease (GBD) study. For the latter, we calculated population attributable fractions (PAFs), using the classic (Levin's) epidemiological formula for polytomous exposures, with relative risks (RRs) reported in literature. To extend estimates from 2020 to 2030, we modeled the transmission of HSV-2 in 45 African countries using a deterministic compartmental mathematical model, structured by age, sex, and sexual activity, which was fitted to seroprevalence gathered from a systematic review and meta-regression analysis. In the 90 LMICs, genital herpes contributed to US$813.5 million in treatment and productivity losses in 2019 (range: US$674.4 to US$952.2 million). Given observed care-seeking and absenteeism, losses are in the range of US$29.0 billion (US$25.6 billion to US$34.5 billion). Quality-of-life losses in the amount of 61.7 million quality-adjusted life years (QALYs) are also possible (50.4 million to 74.2 million). The mean annual cost of treatment and wage losses per infection is US$183.00 (95% CI: US$153.60 to US$212.55); the mean annual cost of quality-of-life losses is US$343.27 (95% CI: 272.41 to 414.14). If HSV-2 has fueled the transmission of HIV, then seroprevalent HSV-2 cases in 2018 can account for 33.2% of the incident HIV infections in 2019, with an associated antiretroviral therapy (ART) cost of US$186.3 million (range: US$163.6 to US$209.5 million) and 28.6% of HIV-related wage losses (US$21.9 million; range: US$19.2 to US$27.4 million). In the WHO Africa region, the 3.9 million seroprevalent genital herpes cases from 2020 to 2030 contributed to US$700.2 million in treatment and productivity losses. Additionally, quality-of-life losses in the range of 88 million to 871 million QALYs are also possible. If HSV-2 has contributed to the transmission of HIV, then in 2020, the PAF of HIV due to prevalent HSV-2 will be 32.8% (95% CI: 26.7% to 29.9%) and due to incident infections will be 4.2% (95% CI: 2.6% to 3.4%). The PAF due to prevalent infections will decline to 31.0% by 2030 and incident infections to 3.6%. Though we have accounted for the uncertainty in the epidemiological and economic parameter values via the sensitivity analysis, our estimates still undervalue losses due to limiting to the 15- to 49-year-old population. CONCLUSIONS: Economic losses due to genital herpes in LMICs can be large, especially when considering the lifelong nature of the disease. Quality-of-life losses outweigh spending on treatment and reductions in productivity. If HSV-2 has contributed to the spread of HIV in LMICs, then nearly one third of antiretroviral costs and HIV-related wage losses can be attributed to HSV-2. Given the magnitude of the combined losses, a vaccine against HSV-2 must be a global priority.


Subject(s)
HIV Infections , Herpes Genitalis , Humans , Adolescent , Young Adult , Adult , Middle Aged , Herpes Genitalis/epidemiology , Herpesvirus 2, Human , Developing Countries , HIV , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/complications , Seroepidemiologic Studies , Financial Stress , Quality of Life , Anti-Retroviral Agents
20.
N Engl J Med ; 387(20): 1865-1876, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36322837

ABSTRACT

BACKGROUND: The BNT162b2 vaccine against coronavirus disease 2019 (Covid-19) has been authorized for use in children 5 to 11 years of age and adolescents 12 to 17 years of age but in different antigen doses. METHODS: We assessed the real-world effectiveness of the BNT162b2 vaccine against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children and adolescents in Qatar. To compare the incidence of SARS-CoV-2 infection in the national cohort of vaccinated participants with the incidence in the national cohort of unvaccinated participants, we conducted three matched, retrospective, target-trial, cohort studies - one assessing data obtained from children 5 to 11 years of age after the B.1.1.529 (omicron) variant became prevalent and two assessing data from adolescents 12 to 17 years of age before the emergence of the omicron variant (pre-omicron study) and after the omicron variant became prevalent. Associations were estimated with the use of Cox proportional-hazards regression models. RESULTS: Among children, the overall effectiveness of the 10-µg primary vaccine series against infection with the omicron variant was 25.7% (95% confidence interval [CI], 10.0 to 38.6). Effectiveness was highest (49.6%; 95% CI, 28.5 to 64.5) right after receipt of the second dose but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI, 21.5 to 63.3) among children 5 to 7 years of age and 16.6% (95% CI, -4.2 to 33.2) among those 8 to 11 years of age. Among adolescents, the overall effectiveness of the 30-µg primary vaccine series against infection with the omicron variant was 30.6% (95% CI, 26.9 to 34.1), but many adolescents had been vaccinated months earlier. Effectiveness waned over time since receipt of the second dose. Effectiveness was 35.6% (95% CI, 31.2 to 39.6) among adolescents 12 to 14 years of age and 20.9% (95% CI, 13.8 to 27.4) among those 15 to 17 years of age. In the pre-omicron study, the overall effectiveness of the 30-µg primary vaccine series against SARS-CoV-2 infection among adolescents was 87.6% (95% CI, 84.0 to 90.4) and waned relatively slowly after receipt of the second dose. CONCLUSIONS: Vaccination in children was associated with modest, rapidly waning protection against omicron infection. Vaccination in adolescents was associated with stronger, more durable protection, perhaps because of the larger antigen dose. (Funded by Weill Cornell Medicine-Qatar and others.).


Subject(s)
BNT162 Vaccine , COVID-19 , Vaccine Efficacy , Adolescent , Child , Humans , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Qatar/epidemiology , Retrospective Studies , SARS-CoV-2 , Child, Preschool , Vaccine Efficacy/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...